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Nomenclature 
𝛽𝛽𝑎𝑎 Axis tilt, angle of inclination from horizontal of the tracker axes, 0° to +90°. 

𝛽𝛽𝑐𝑐 Cross-axis slope angle, angle of inclination from horizontal of the plane 
containing the tracker axes, in the cross-axis direction, −90° to +90°. 

𝛽𝛽𝑠𝑠 Solar elevation angle, angle of sun above the horizontal, 0° to +90°. 

𝛽𝛽𝑔𝑔 Grade slope angle, angle between slope plane and horizontal plane, 0° to +90°. 

𝛾𝛾𝑎𝑎 Axis azimuth, angle clockwise from north of the horizontal projection of the 
tracker axis, 0° to +360°. 

𝛾𝛾𝑔𝑔 Grade azimuth, angle clockwise from north of the horizontal projection of falling 
slope, 0° to +360°. 

𝛾𝛾𝑠𝑠 Solar azimuth, angle of sun clockwise from north, 0° to +360°. 

𝜃𝜃𝐵𝐵 Backtracking rotation, deviation from flat in the rotation plane, −180° to +180°. 

𝜃𝜃𝑐𝑐 Backtracking correction angle, difference between true-tracking and backtracking 
angles, −180° to +180°. 

𝜃𝜃𝑇𝑇 True-tracking rotation, deviation from flat in the rotation plane, −180° to +180°. 

𝑓𝑓𝑠𝑠 Shaded fraction, the fraction of a row that is shaded by the adjacent row, 0 to 1. 

𝐺𝐺𝐺𝐺𝐺𝐺 Ground coverage ratio, the ratio of tracker collector width ℓ to row pitch 𝑝𝑝, 0 to 1. 

ℎ Row offset, the vertical on-center z-distance between adjacent tracker axes. 

ℓ Collector width, the cross-axis distance spanned by the tracker’s solar modules. 

𝑝𝑝 Row pitch, the horizontal on-center distance between adjacent tracker axes. 
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Abstract 
Closed-form equations of the true-tracking angle, backtracking angle, shaded fraction, and 
orientation angles of single-axis solar trackers installed on arbitrarily oriented slopes are derived.  
These slope-aware adjustments are necessary to successfully prevent row to row shading in 
arrays with nonzero cross-axis slope.  A tracker rotation modeling procedure comprising these 
equations is provided.  
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1 Introduction 
Solar trackers optimize collector orientation and PV yield by rotating collectors to track the sun’s 
movement across the sky.  As described by Marion and Dobos (2013), the main objective of a 
tracker control algorithm is to maximize collector exposure to direct beam irradiance from the 
sun by minimizing the beam irradiance angle of incidence.  However, this behavior will cause 
adjacent rows to partially shade each other across part of the module when the sun is low in the 
sky.  For certain module types where such a shadow is distributed across all cells equally (for 
instance, thin film modules), this is an acceptable loss linearly proportional to fraction of shade.  
However, conventional modules with crystalline silicon cells are usually arranged in such a way 
that the shadow falls entirely on a few cells, creating significant production loss due to electrical 
mismatch.  In that case, the array should operate at increased angle of incidence when the sun is 
low in the sky to prevent row-to-row shading.  This behavior is called “backtracking” because it 
is accomplished by the tracker rotating backwards from the “ideal” rotation so that the row’s 
shadow is shortened and misses the row behind it.  The optimal backtracking rotation sacrifices 
as little beam irradiance as possible and is calculated using the spacing geometry between rows 
and the instantaneous solar position so that each row’s shadow extends to, but not onto, the row 
behind.  However, the backtracking geometry used in many commercial single-axis tracker 
systems is equivalent to the one described by Lorenzo, Narvarte, and Muñoz (2011), which 
assumes tracker axes are contained within a horizontal plane, i.e.: there is no vertical offset 
between rows.  This is often a valid assumption for real-world PV systems, but for systems 
installed on even mild cross-slopes, the harsh nonlinearity between shading and power loss 
motivates a more general backtracking method that considers both horizontal and vertical row 
offsets.  Slope-aware backtracking has been explored briefly by Nascimento et al. (2015) and 
Schneider (2012), but here we present a more comprehensive mathematical treatment.  

Section 2 describes the various reference frames and coordinate systems used in later sections. 
Section 3 provides a derivation of the ideal rotation angle that minimizes beam irradiance angle 
of incidence for an arbitrarily oriented single-axis tracker axis.  Section 4 derives a general 
single-axis backtracking formula that prevents row to row shading in arrays on sloped terrain by 
accounting for the component of the array’s slope that is perpendicular to the tracker axes.  
Section 5 provides formulas for the required slope-adjusted orientation inputs (tracker axis 
inclination angle and cross-axis slope angle) from base array and slope orientation.  Section 6 
provides a formula of calculating the shaded fraction of a row based on single-axis tracker 
rotation angle, array geometry, and slope geometry.  Finally, Section 7 outlines a step-by-step 
procedure to combine these equations to model single-axis tracker rotations. 

The tracker rotation and auxiliary equations presented here have applications in PV performance 
simulations, O&M monitoring, and the control software used in field single-axis tracker units.  
All equations presented here are closed-form and the final expressions are not substantially more 
complex than the standard backtracking equations, so it should be straightforward to incorporate 
them into modeling and tracker controller software.  
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2 Reference Frames and Coordinate Systems 
Before deriving tracking strategy equations, it is worthwhile to take a moment to explain the 
relevant reference frames and coordinate systems.  Careless treatment of these details could end 
up with tracker systems following the sun the wrong way across the sky or backtracking 
according to a slope in the wrong direction.  We draw attention to details like the distinction 
between north-azimuth and south-azimuth tracker axes (𝛾𝛾𝑎𝑎 = 0° and 180°, respectively) and 
positive and negative tracker rotations.  The reader should be familiar with the right-hand rule to 
determine the sign of angles and how coordinate axes relate to each other.  

The first reference frame is the global reference frame of the location of the PV system in 
question, described with a right-handed Cartesian coordinate system with 𝑥𝑥 axis pointing east, 𝑦𝑦 
axis pointing north, and 𝑧𝑧 axis pointing up.  It is indifferent to the specifics of a PV system and 
acts as the fixed environmental frame that the local tracker reference frame is defined in relation 
to. The various azimuth angles (axis azimuth 𝛾𝛾𝑎𝑎, solar azimuth 𝛾𝛾𝑠𝑠, and grade azimuth 𝛾𝛾𝑔𝑔) are 
defined as angles in this global coordinate system.  For consistency with existing industry 
convention, azimuth is defined as a clockwise angle around the global 𝑧𝑧 axis, e.g. north is 0°, 
east is 90°, south is 180°, and west is 270°.  Note that these are left-handed angles with respect to 
the global 𝑧𝑧 axis and need to be handled as such when used mathematically.  

To describe rotations of the tracker plane, we define a second reference frame called the tracker 
reference frame.  This frame is specific to the PV system and is defined by rotating the global 
frame by the system’s axis azimuth 𝛾𝛾𝑎𝑎 and axis tilt 𝛽𝛽𝑎𝑎.  The tracker reference frame is described 
by the right-handed Cartesian coordinate system with coordinate axes 𝑡𝑡𝑥𝑥���⃗ , 𝑡𝑡𝑦𝑦���⃗ , 𝑡𝑡𝑧𝑧���⃗ , where 𝑡𝑡𝑥𝑥���⃗  is 
horizontal and perpendicular to the tracker axis, 𝑡𝑡𝑦𝑦���⃗  is parallel to the tracker axis and points in the 
direction of the tracker azimuth 𝛾𝛾𝑎𝑎, and 𝑡𝑡𝑧𝑧���⃗  is the cross product of 𝑡𝑡𝑥𝑥���⃗  and 𝑡𝑡𝑦𝑦���⃗ , so it points roughly 
upward with 𝛽𝛽𝑎𝑎 as the angle between 𝑡𝑡𝑧𝑧���⃗  and vertical (𝑧𝑧) in the global reference frame.  Like the 
azimuth angles, the axis tilt is a left-handed angle around 𝑡𝑡𝑥𝑥���⃗ .  Figure 1 shows the relationship 
between the tracker and global reference frames. 

 

Figure 1:  Comparison between global coordinate axes (blue) and tracker coordinates axes (red).  
The global coordinates (𝒙𝒙,𝒚𝒚, 𝒛𝒛) are defined by east, north, and up.  The tracker coordinates 

�𝒕𝒕𝒙𝒙, 𝒕𝒕𝒚𝒚, 𝒕𝒕𝒛𝒛� are defined by rotating by the tracker axis azimuth 𝜸𝜸𝜸𝜸 and tilt 𝜷𝜷𝜸𝜸.  
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Working in the tracker reference frame is convenient because it allows the system to be treated 
as if it was a simple north-south horizontal axis system.  However, it does require external 
coordinates like solar position to be transformed into the tracker reference system.  Because the 
common solar position calculation methods predict solar position in terms of its angular 
coordinates in the two-dimensional sky dome, we also consider a spherical coordinate system in 
the global reference frame.  Figure 2 shows how these spherical coordinates relate to the global 
Cartesian coordinates. 

 

Figure 2:  Solar position angles and the corresponding Cartesian coordinates.  The global 
Cartesian coordinates are found by treating the solar position angles as spherical coordinates. In 
this case, the corresponding Cartesian 𝒙𝒙 and 𝒚𝒚 coordinates are positive and negative, respectively 

(sun in eastern and southern sky). 

The sun’s position is identified here with the azimuth and elevation angles 𝛾𝛾𝑠𝑠 and 𝛽𝛽𝑠𝑠, noting that 
the elevation angle is the angular complement to the more common zenith angle.  

Note that the system’s physical placement and orientation are described equivalently by two axis 
azimuth angles separated by 180°.  However, the choice of 𝛾𝛾𝑎𝑎 determines the direction of the 𝑡𝑡𝑦𝑦���⃗  
axis and therefore also determines the sign convention for rotation angles.  By the right-hand 
rule, a rotation around an axis is positive when it is counterclockwise around the positive axis.  
For example, consider a tracker array with 𝛾𝛾𝑎𝑎 = 180° (𝑡𝑡𝑦𝑦���⃗  pointing south) which places 𝑡𝑡𝑥𝑥���⃗  
pointed west.  To orient the modules to the east in the morning, the rotation of the tracker around 
the 𝑡𝑡𝑦𝑦���⃗  axis is negative, and so 𝜃𝜃𝑇𝑇 < 0.  Similarly, 𝜃𝜃𝑇𝑇 > 0 in the afternoon to orient the modules 
to face west.  For an array with the same geometry but 𝛾𝛾𝑎𝑎 = 0°, the reverse would be true: 
positive rotation in the morning and negative in the afternoon.  For a right-handed rotation to be 
consistent with the industry convention of considering morning rotations negative and afternoon 
rotations positive, a north-south aligned system must have 𝛾𝛾𝑎𝑎 = 180°.  Figure 3 shows this 
rotation in the context of the tracker coordinate system. 
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Figure 3:  Tracker rotation 𝜽𝜽 relative to the tracker coordinate system. The rotation is a right-
handed rotation around 𝒕𝒕𝒚𝒚���⃗  equal to the angle from 𝒕𝒕𝒛𝒛���⃗  to the module normal (shown in black).  

Because the rotation is right-handed, reversing the direction of 𝒕𝒕𝒚𝒚���⃗  (for example from roughly south 
to north) determines which direction (west or east respectively) is considered a positive rotation.  

This example shows a positive rotation to the west assuming 𝒕𝒕𝒚𝒚���⃗  is roughly south.  

Similarly, the orientation of 𝑡𝑡𝑦𝑦���⃗  determines the sign of the cross-axis slope angle 𝛽𝛽𝑐𝑐.  By defining 
𝛽𝛽𝑐𝑐 as a right-handed rotation around 𝑡𝑡𝑦𝑦���⃗  and using the convention determined above for tracker 
rotation angles, the right-hand rule determines west-facing slopes to have positive cross-axis 
slope for 𝛾𝛾𝑎𝑎 = 180°.  This is shown in Figure 4. 

 

Figure 4:  Cross-axis slope angle 𝜷𝜷𝜷𝜷 relative to the tracker coordinate system. The rotation is a 
right-handed rotation around 𝒕𝒕𝒚𝒚���⃗ . Because the rotation is right-handed, reversing the direction of 𝒕𝒕𝒚𝒚���⃗  

(from roughly south to north) determines which direction of slope (west or east respectively) is 
considered a positive cross-axis slope angle.  This example shows a positive rotation to the west 

assuming 𝒕𝒕𝒚𝒚���⃗  is roughly south.  
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3 True-Tracking Angle 
As described by Marion and Dobos (2013), the beam component of collected irradiance is 
maximized by minimizing its angle of incidence with the module normal.  Because single-axis 
trackers cannot face directly towards the sun except in unusual circumstances, this minimization 
is instead achieved by matching tracker rotation to the projection of the sun’s position onto the 
tracking plane of rotation, i.e.: the plane swept by the panel normal over the tracker’s range of 
motion.  This projection is easier to calculate if the solar position, which is usually reported in 
spherical coordinates, is expressed in Cartesian coordinates instead.  As described in Figure 2, 
the solar azimuth 𝛾𝛾𝑠𝑠 and elevation 𝛽𝛽𝑠𝑠 are converted from spherical coordinates to Cartesian 
coordinates with: 

�
𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧
� = �

cos𝛽𝛽𝑠𝑠 sin 𝛾𝛾𝑠𝑠
cos𝛽𝛽𝑠𝑠 cos 𝛾𝛾𝑠𝑠

sin𝛽𝛽𝑠𝑠
� . (1) 

These Cartesian coordinates are used to calculate the solar projection onto the plane 
perpendicular to the tracker axis. Figure 5 shows a tracker axis 𝐴𝐴𝐴𝐴 with tilt 𝛽𝛽𝑎𝑎 and azimuth 𝛾𝛾𝑎𝑎.  
The perpendicular vectors 𝑡𝑡𝑥𝑥���⃗  and 𝑡𝑡𝑧𝑧���⃗  together define the tracking plane of rotation.  The projected 
solar coordinates (𝑠𝑠𝑥𝑥′ , 𝑠𝑠𝑧𝑧′) on the tracking plane of rotation determine 𝜃𝜃𝑇𝑇, the true-tracking 
rotation angle.  

 

Figure 5.  Projecting solar position onto the tracker rotation plane.  AB shows a tracker axis with 
its tracker rotation plane defined by the 𝒕𝒕𝒙𝒙���⃗  and 𝒕𝒕𝒛𝒛���⃗  axes.  The projected solar coordinates (𝒔𝒔𝒙𝒙′ , 𝒔𝒔𝒛𝒛′ ) are 

found by rotating the solar Cartesian coordinates (𝒔𝒔𝒙𝒙, 𝒔𝒔𝒚𝒚, 𝒔𝒔𝒛𝒛) into the tracker coordinate system.  
Note that in this case, projected solar coordinate 𝒔𝒔𝒙𝒙′  is negative, meaning 𝜽𝜽𝜽𝜽 < 𝟎𝟎. 
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Rotation matrices enable transformation from the global coordinates (𝑠𝑠) to the tracker 
coordinates (𝑠𝑠′��⃗ ) by first rotating around the 𝑧𝑧 axis by the axis azimuth and then around the 𝑥𝑥 axis 
by the axis tilt: 
 

𝑠𝑠′��⃗ = 𝐑𝐑𝐱𝐱𝐑𝐑𝐳𝐳s⃗, (2) 
 
where: 

𝐑𝐑𝐱𝐱 = �
1 0 0
0 cos𝛽𝛽𝑎𝑎 − sin𝛽𝛽𝑎𝑎
0 sin𝛽𝛽𝑎𝑎 cos𝛽𝛽𝑎𝑎

�               and              𝐑𝐑𝐳𝐳 = �
cos 𝛾𝛾𝑎𝑎 − sin 𝛾𝛾𝑎𝑎 0
sin 𝛾𝛾𝑎𝑎 cos 𝛾𝛾𝑎𝑎 0

0 0 1
� . (3) 

 
Note 𝐑𝐑𝐱𝐱 and 𝐑𝐑𝐳𝐳 are counterclockwise rotations around the global 𝑥𝑥 and 𝑧𝑧 axes, despite angles 𝛽𝛽𝑎𝑎 
and 𝛾𝛾𝑎𝑎 being clockwise angles.  This is because the angles 𝛽𝛽𝑎𝑎 and 𝛾𝛾𝑎𝑎 define the basis 
transformation from global to tracker coordinates, so their negative is used for vector 
transformations from global to tracker coordinates.  This sign change cancels the sign change 
from converting the left-handed angles to right-handed angles. For ease of implementation, 
Equation 2 expands to: 
 

�
𝑠𝑠𝑥𝑥′
𝑠𝑠𝑦𝑦′

𝑠𝑠𝑧𝑧′
� = �

𝑠𝑠𝑥𝑥 cos 𝛾𝛾𝑎𝑎 − 𝑠𝑠𝑦𝑦 sin 𝛾𝛾𝑎𝑎
𝑠𝑠𝑥𝑥 sin 𝛾𝛾𝑎𝑎 cos𝛽𝛽𝑎𝑎 + 𝑠𝑠𝑦𝑦 cos𝛽𝛽𝑎𝑎 cos 𝛾𝛾𝑎𝑎 − 𝑠𝑠𝑧𝑧 sin𝛽𝛽𝑎𝑎
𝑠𝑠𝑥𝑥 sin γ𝑎𝑎 sin𝛽𝛽𝑎𝑎 + 𝑠𝑠𝑦𝑦 sin𝛽𝛽𝑎𝑎 cos 𝛾𝛾𝑎𝑎 + 𝑠𝑠𝑧𝑧 cos𝛽𝛽𝑎𝑎

� (4) 

 
Note, in Lorenzo, Narvarte, and Muñoz (2011), 𝑠𝑠𝑦𝑦′  is missing sin 𝛾𝛾𝑎𝑎 from the first term, but it 
doesn’t change their derivation because 𝑠𝑠𝑦𝑦′  is never used. Because the in-plane components 𝑠𝑠𝑥𝑥′  
and 𝑠𝑠𝑧𝑧′  define the projection of solar position onto the tracking rotation plane, the tracker rotation 
𝜃𝜃𝑇𝑇 that faces the collector surface at the projected position is given by: 
 

𝜃𝜃𝑇𝑇 = atan2(𝑠𝑠𝑥𝑥′ , 𝑠𝑠𝑧𝑧′) (5) 
 
where atan2(𝑠𝑠𝑥𝑥′ , 𝑠𝑠𝑧𝑧′) is preferred over the more common tan−1(𝑠𝑠𝑥𝑥′/𝑠𝑠𝑧𝑧′) because it has an extended 
range of (−180°, 180°], allowing 𝜃𝜃𝑇𝑇 to progress beyond ±90° when the sun is low in the sky 
and crosses “underneath” a tilted array. This tracker rotation is called the “true-tracking” angle.  
Note that Lorenzo et al. refer to the true-tracking angle as 𝜔𝜔𝐼𝐼𝐼𝐼.  It minimizes the angle of 
incidence between the collector surface and the sun’s direct irradiance, thereby maximizing the 
capture of direct irradiance.    
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4 Backtracking Angle 
A system backtracks to avoid row to row shading while deviating as little as possible from the 
true-tracking angle in order to still optimize capture of direct irradiance.  This is achieved by 
orienting the row such that the shadow cast from the top edge of one row is exactly tangent to the 
bottom edge of the row behind it. Equivalently, when the solar vector is projected onto the 
tracker rotation plane, it passes through a point on the upper edge of one row to a point on the 
lower edge of the previous row. 

This derivation of backtracking angle for trackers on a cross-axis slope extends the derivation 
provided by Lorenzo, Narvarte, and Muñoz (2011) for trackers on a horizontal plane.  Figure 6 
shows a side view of two adjacent tracker rows on a cross-axis slope.  The rows have collector 
width 𝑙𝑙 and are separated by a horizontal pitch 𝑝𝑝 and z-offset ℎ.  The true-tracking position 𝜃𝜃𝑇𝑇 
and slope-corrected backtracking position are shown together for comparison.  The backtracking 
correction 𝜃𝜃𝑐𝑐 is the angle between the backtracking and true-tracking rotations. 

  

Figure 6.  Cross-section of adjacent single-axis tracker rows with an offset 𝒉𝒉.  The tracker axes 
point into the page and are not visible in this 2D diagram.  The slope-aware backtracking position 

is shown in position D, with the true-tracking position as F for comparison.  Point E shows the 
midpoint of the line segment (not shown) connecting the tracker axes, i.e. the segment between 

point A and the corresponding point on the left tracker. 

Note that, unlike the row pitch 𝑝𝑝, the row offset ℎ is a signed quantity depending on the direction 
of the cross-axis slope as determined by the right-hand rule around 𝑡𝑡𝑦𝑦���⃗ .  Because 𝑡𝑡𝑦𝑦���⃗  points into the 
page, a positive 𝛽𝛽𝑐𝑐 appears as a clockwise rotation from the reader’s perspective.  The slope in 
Figure 6 is rotated counter-clockwise from the reader’s perspective, so 𝛽𝛽𝑐𝑐 is negative, and 
therefore we define h as negative as well so it points down.  For example, consider an array built 
on a west-facing slope (𝛾𝛾𝑔𝑔 = 270) with tracker axis azimuth pointing south (𝛾𝛾𝑎𝑎 = 180).  The 
plane containing the tracker axes is tilted by a positive angle 𝛽𝛽𝑐𝑐 = tan−1 ℎ/𝑝𝑝 compared to the 
horizontal plane by the right hand rule, and therefore ℎ would be positive (pointing up).  If the 
slope were east-facing (again with tracker axis azimuth pointing south), the tracker axes plane 
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would be tilted negative, and ℎ would also be negative (pointing down).  Following these rules, 
Figure 6 shows a negative ℎ: 𝑡𝑡𝑦𝑦���⃗  points into the page, so the right hand rule determines that the 
axes plane is rotated negatively. 

Similarly, many of the segment lengths in the following equations can be negative; we use 𝐴𝐴𝐴𝐴���� to 
refer to this length and |𝐴𝐴𝐴𝐴| in the cases where the length is always positive.  

Finally, it is important to realize that ℎ and 𝛽𝛽𝑐𝑐 are defined by the offset along the 𝑡𝑡𝑧𝑧���⃗  axis (i.e., in 
the tracker reference frame), making it necessary to consider the axis tilt 𝛽𝛽𝑎𝑎 when calculating 
them.  Section 5 goes into more detail about calculating the cross-axis slope of tilted arrays.  

The backtracking correction angle 𝜃𝜃𝑐𝑐 = ∠𝐷𝐷𝐴𝐴𝐺𝐺 is found by considering the right triangle AGD: 
 

cos 𝜃𝜃𝑐𝑐 =
𝐴𝐴𝐺𝐺����

  𝐴𝐴𝐷𝐷����  
(6) 

  
Realizing |𝐴𝐴𝐷𝐷| = ℓ/2, we next find 𝐴𝐴𝐺𝐺���� through triangle 𝐸𝐸𝐴𝐴𝐺𝐺.  Because ∠𝐸𝐸𝐴𝐴𝐺𝐺 = 𝜃𝜃𝑇𝑇: 
 

cos 𝜃𝜃𝑇𝑇 =
𝐴𝐴𝐺𝐺����

  𝐴𝐴𝐸𝐸����  
=
𝐴𝐴𝐴𝐴���� + 𝐴𝐴𝐺𝐺����
𝐴𝐴𝐵𝐵��� + 𝐵𝐵𝐸𝐸���

(7) 

 
we have: 
 

𝐴𝐴𝐺𝐺���� =  (𝐴𝐴𝐵𝐵��� + 𝐵𝐵𝐸𝐸���) cos 𝜃𝜃𝑇𝑇 − 𝐴𝐴𝐴𝐴���� (8) 
 
Because point 𝐸𝐸 is defined to be the midpoint between the tracker axes, by symmetry we have 
|𝐵𝐵𝐸𝐸| = 𝑝𝑝/2 and 𝐵𝐵𝐴𝐴��� = −ℎ/2.  𝐴𝐴𝐵𝐵��� and 𝐴𝐴𝐴𝐴���� are found by considering triangle 𝐴𝐴𝐵𝐵𝐴𝐴 and recognizing 
that ∠𝐴𝐴𝐴𝐴𝐵𝐵 = 𝜃𝜃𝑇𝑇: 
  

𝐴𝐴𝐵𝐵��� = −
ℎ/2

tan𝜃𝜃𝑇𝑇
                 and                 𝐴𝐴𝐴𝐴���� = −

ℎ/2
sin𝜃𝜃𝑇𝑇

. (9) 

Then we have 
 

𝐴𝐴𝐺𝐺���� = (|𝐵𝐵𝐸𝐸| + 𝐴𝐴𝐵𝐵���) cos 𝜃𝜃𝑇𝑇 − 𝐴𝐴𝐴𝐴���� 

= �
p
2
−

h/2
tan𝜃𝜃𝑇𝑇

� cos 𝜃𝜃𝑇𝑇 +
ℎ/2

sin𝜃𝜃𝑇𝑇
 

=
p
2
��1 −

ℎ/𝑝𝑝
tan𝜃𝜃𝑇𝑇

� cos 𝜃𝜃𝑇𝑇 +
ℎ/𝑝𝑝

sin𝜃𝜃𝑇𝑇
� 

=
𝑝𝑝
2
�cos𝜃𝜃𝑇𝑇 −

ℎ
𝑝𝑝
�

cos𝜃𝜃𝑇𝑇
tan𝜃𝜃𝑇𝑇

−
1

sin𝜃𝜃𝑇𝑇
�� 

=
p
2
�cos𝜃𝜃𝑇𝑇 −

ℎ
𝑝𝑝
�

cos2 𝜃𝜃𝑇𝑇 − 1
sin𝜃𝜃𝑇𝑇

�� 
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=
p
2
�cos 𝜃𝜃𝑇𝑇 +

ℎ
𝑝𝑝

sin𝜃𝜃𝑇𝑇� 

 
Using the definitions 𝐺𝐺𝐺𝐺𝐺𝐺 = ℓ/𝑝𝑝 and tan𝛽𝛽𝑐𝑐 = ℎ/𝑝𝑝, we can now solve for the backtracking 
correction angle: 

cos𝜃𝜃𝑐𝑐 =
cos 𝜃𝜃𝑇𝑇 + tan𝛽𝛽𝑐𝑐 sin 𝜃𝜃𝑇𝑇

𝐺𝐺𝐺𝐺𝐺𝐺
, (10) 

 
or using the cosine angle addition identity: 
 

cos 𝜃𝜃𝑐𝑐 =
cos (𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

(11) 

 
Note that 𝐺𝐺𝐺𝐺𝐺𝐺  is defined here as the ratio of collector width ℓ to horizontal separation 𝑝𝑝.  This 
means that 𝐺𝐺𝐺𝐺𝐺𝐺 remains a measure of array ground coverage when viewed from overhead; it 
ignores the vertical dimension. Also note that when the tan𝛽𝛽𝑐𝑐 is zero, the backtracking 
correction reverts to the original formula derived on horizontal ground. 
 
However, because cosine is periodic and even, Equation 11 is satisfied by four distinct tracker 
rotations.  For a given tracker rotation that satisfies Equation 11, its 180° opposite will satisfy it 
as well, despite facing away from the sun.  The second pair is generated by mirroring the first 
pair across the true-tracking plane (i.e.: by rotating forward by the correction angle instead of 
backward).  The mirrored pairs have equivalent shading and direct irradiance capture 
characteristics, as shown in Figure 7: 

 

Figure 7.  Cross-section of two adjacent tracker rows. The tracker axes point into the page and are 
not visible in this 2D diagram. The two optimal positions P1 and P2 eliminate row to row shading.  

P1 and P2 expose the same cross section to beam irradiance and are symmetrical around the 
true-tracking position, shown as a dotted line perpendicular to the solar vector. 
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First, we will eliminate rotations that face away from the sun.  These rotations come about in 
cases where the plane containing the tracker axes (the “system plane”) is not horizontal and the 
sun is above the horizon but below the system plane.  In these cases cos(𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐) < 0, implying 
|𝜃𝜃𝑐𝑐| > 90 in Equation 11, so the tracker will have crossed the system plane and presented the 
row’s rear side to the sun.  However, because cosine is periodic, we are free to take the absolute 
value of the right-hand side (which is equivalent to adding 180° to 𝜃𝜃𝐶𝐶) while still satisfying the 
equation.  The effect is to keep |𝜃𝜃𝑐𝑐| ≤ 90 so that the front surface of the row will always see the 
sun (or, at worst, edge-on to it): 
 

cos 𝜃𝜃𝑐𝑐 =
|cos (𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)|
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

(12) 

 
The remaining two correction angles are given by: 
 

𝜃𝜃𝑐𝑐 =  ± cos−1 �
|cos (𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)|
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

� (13) 

 
One of the two positions is the standard backtracking position, but (by virtue of the 𝜃𝜃𝑐𝑐 
derivation) the other is equal in shading avoidance and direct irradiance capture.  Because it 
involves tracking forward beyond the true-tracking angle rather than behind it, it could be called 
“over-tracking”.  Whereas backtracking tends to orient rows flatter and pointing up, over-
tracking tends to orient them steeper and, at the edges of the day, upside down. 
 
Because of the mechanical complications of such extreme rotations and the supposition that 
more diffuse irradiance is available downwelling from above than upwelling from below, 
backtracking will be preferred for PV systems.  For the backtracking correction angle to tend to 
cancel the true-tracking angle, the sign of the tracking adjustment must be opposite that of the 
true-tracking angle: 
 

𝜃𝜃𝑐𝑐 =  − sign(𝜃𝜃𝑇𝑇) cos−1 �
|cos(𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)|
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

� . (14) 

 
The final note is that in the middle of the day, the argument to the arccosine will be out of range 
because there is no row-to-row shading to avoid.  When the backtracking criterion given by 
 

�
cos(𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

� < 1 (15) 

 
is not satisfied, 𝜃𝜃𝑐𝑐 is set to zero. 
 
The overall rotation when backtracking 𝜃𝜃𝐵𝐵 is then given by the sum of the true-tracking angle 𝜃𝜃𝑇𝑇 
and the backtracking correction angle 𝜃𝜃𝑐𝑐: 
 

𝜃𝜃𝐵𝐵 = 𝜃𝜃𝑇𝑇 + 𝜃𝜃𝑐𝑐 (16) 
  



11 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

5 Axis Tilt and Cross Slope 
The axis tilt 𝛽𝛽𝑎𝑎 and cross slope angle 𝛽𝛽𝑐𝑐 are dependent on the grade slope angle 𝛽𝛽𝑔𝑔 and the 
azimuth difference between tracker axis and grade Δ𝛾𝛾 = 𝛾𝛾𝑎𝑎 − 𝛾𝛾𝑔𝑔.  In Figure 8, segment 𝐴𝐴𝐴𝐴 is a 
tracker axis.  Points 𝐴𝐴,𝐴𝐴,𝐺𝐺 are coplanar with the grade and points 𝐴𝐴,𝐺𝐺,𝐷𝐷 define a horizontal 
plane parallel to the x-y plane, with points 𝐺𝐺 and 𝐷𝐷 being directly downslope of and below 𝐴𝐴, 
respectively.  Points 𝐴𝐴,𝐺𝐺,𝐷𝐷 are coplanar with the vertical x-z plane.  Vector 𝑁𝑁��⃗  is the unit normal 
to the slope plane while unit vector �⃗�𝑣 is inside the slope plane and perpendicular to both 𝐴𝐴𝐴𝐴 
and 𝑁𝑁��⃗ .  Note that because the axis tilt and cross slope are invariant to azimuthal rotations, we use 
a rotated version of the global coordinate system here for convenience.  

 

Figure 8.  Geometry of a single-axis tracking axis AB on a slope which is non-parallel to that axis.  
The vector 𝒗𝒗��⃗  is perpendicular to AB and parallel to the slope plane, representing the cross-axis 

slope vector.  Note that the (x,y,z) axes here are arbitrarily chosen to align with the slope. 

Defining segment 𝐴𝐴𝐴𝐴 to have length 1, the leg lengths of the right triangle 𝐴𝐴𝐷𝐷𝐺𝐺 are: 
 

|𝐴𝐴𝐷𝐷| = sin𝛽𝛽𝑎𝑎       and       |CD| = cos𝛽𝛽𝑎𝑎 cosΔ𝛾𝛾 (17) 
 
Relating the grade slope angle 𝛽𝛽𝑔𝑔 = ∠𝐴𝐴𝐺𝐺𝐷𝐷 to these side lengths gives: 

tan𝛽𝛽𝑔𝑔 =
|𝐴𝐴𝐷𝐷|
|𝐺𝐺𝐷𝐷| =

tan𝛽𝛽𝑎𝑎
cosΔ𝛾𝛾

, (18) 

 
which can be rearranged to define 𝛽𝛽𝑎𝑎: 

𝛽𝛽𝑎𝑎 = tan−1(tan𝛽𝛽𝑔𝑔 cosΔ𝛾𝛾) (19) 



12 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

The cross-axis slope angle 𝛽𝛽𝑐𝑐 is found by calculating the cross product 

�⃗�𝑣 = 𝑁𝑁��⃗ × 𝑡𝑡𝑦𝑦���⃗ , (20) 

where: 

𝑡𝑡𝑦𝑦���⃗ = �
    cos𝛽𝛽𝑎𝑎 cosΔ𝛾𝛾
− cos𝛽𝛽𝑎𝑎 sinΔ𝛾𝛾

− sin𝛽𝛽𝑎𝑎
�                and                 𝑁𝑁��⃗ = �

sin𝛽𝛽𝑔𝑔
0

cos𝛽𝛽𝑔𝑔
� . (21) 

We choose to define �⃗�𝑣 = 𝑁𝑁��⃗ × 𝑡𝑡𝑦𝑦���⃗  over the alternative �⃗�𝑣 = 𝑡𝑡𝑦𝑦���⃗ × 𝑁𝑁��⃗  so that 𝛽𝛽𝑐𝑐 is a right-handed 
angle around 𝑡𝑡𝑦𝑦���⃗ .  Taking Figure 8 as an example, using the right-hand rule and assuming the axis 
azimuth is along the downhill direction of the axis, the cross slope angle must be negative. 

For ease of implementation, Equation 20 expands to: 

�⃗�𝑣 = �
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� = �

sinΔ𝛾𝛾 cos𝛽𝛽𝑎𝑎 cos𝛽𝛽𝑔𝑔
sin𝛽𝛽𝑎𝑎 sin𝛽𝛽𝑔𝑔 + cosΔ𝛾𝛾 cos𝛽𝛽𝑎𝑎 cos𝛽𝛽𝑔𝑔

− sinΔ𝛾𝛾 sin𝛽𝛽𝑔𝑔 cos𝛽𝛽𝑎𝑎
� (22) 

Because the vector �⃗�𝑣 points across the trackers in the direction of the neighboring tracker axis, it 
defines the cross slope with its vertical component.  However, as noted in Section 4, the cross-
axis slope angle 𝛽𝛽𝑐𝑐 must be calculated in the tracker reference frame to be consistent with 
Equation 14.  Therefore, we rotate �⃗�𝑣 to adjust for the effect of the tracker axis tilt (rotate by −𝛽𝛽𝑎𝑎 
around the global 𝑦𝑦 axis) and azimuth difference (rotate by Δ𝛾𝛾 around the global 𝑧𝑧 axis): 

𝐑𝐑𝒚𝒚 = �
cos𝛽𝛽𝑎𝑎 0 −sin𝛽𝛽𝑎𝑎

0 1 0
sin𝛽𝛽𝑎𝑎 0 cos𝛽𝛽𝑎𝑎

�               and              𝐑𝐑𝐳𝐳 = �
cosΔ𝛾𝛾 − sinΔ𝛾𝛾 0
sinΔ𝛾𝛾 cosΔ𝛾𝛾 0

0 0 1
� (23) 

𝑣𝑣′���⃗ = 𝐑𝐑𝒚𝒚𝐑𝐑𝒛𝒛�⃗�𝑣 (24) 

Now that the cross-axis vector has been rotated into the tracker reference frame, the cross-axes 
slope is calculated with: 

𝛽𝛽𝑐𝑐 = sin−1
𝑣𝑣′𝑧𝑧
�𝑣𝑣′���⃗ �

. (25) 

To simplify the calculation, we can exploit the fact that rotation matrices do not scale the rotated 
vector, so |�⃗�𝑣| = |𝑣𝑣′���⃗ |, allowing us to skip the calculation of 𝑣𝑣𝑥𝑥′  and 𝑣𝑣𝑦𝑦′ : 

𝛽𝛽𝑐𝑐 = sin−1 �
�𝑣𝑣𝑥𝑥 cosΔγ − 𝑣𝑣𝑦𝑦 sinΔ𝛾𝛾� ⋅ sin𝛽𝛽𝑎𝑎 + 𝑣𝑣𝑧𝑧 cos𝛽𝛽𝑎𝑎

|�⃗�𝑣|
� (26) 
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6 Shaded Fraction 
Again, extending the work provided by Lorenzo, Narvarte, and Muñoz (2011), we derive the 
shaded fraction of module area for trackers on a cross-axis slope at any rotation 𝜃𝜃.  In Figure 9, 
the right tracker is shown raised above its horizontal-terrain analog.   

 
Figure 9.  A cross-section of two adjacent tracker rows on a cross-axis slope. The tracker axes 
point into the page and are not visible in this 2D diagram. The tracker on the right is offset by 𝒉𝒉.   

To calculate the shaded fraction 𝑓𝑓𝑠𝑠 = 𝐺𝐺𝐴𝐴����/ℓ of a tracker in some position 𝜃𝜃 = ∠𝐴𝐴𝐴𝐴𝐺𝐺 with z-
offset  ℎ = 𝑝𝑝 tan𝛽𝛽𝑐𝑐 when the true-tracking angle is 𝜃𝜃𝑇𝑇, realize that triangles 𝐴𝐴𝐴𝐴𝐺𝐺 and 𝐴𝐴𝐷𝐷𝐸𝐸 are 
similar and that the ratios of their corresponding side lengths are equal: 

𝐺𝐺𝐴𝐴����
 𝐴𝐴𝐴𝐴���� 

=
ED����

 AD���� 
, (27) 

giving: 

𝑓𝑓𝑠𝑠 =
1
ℓ

 
𝐸𝐸𝐷𝐷���� 𝐴𝐴𝐴𝐴����
𝐴𝐴𝐷𝐷����

. (28) 

Using the side lengths given by: 

𝐸𝐸𝐷𝐷���� = ℓ − ℎ/ sin𝜃𝜃 (29) 

𝐴𝐴𝐷𝐷���� = 𝐴𝐴𝐴𝐴���� + 𝐴𝐴𝐷𝐷���� = (ℓ sin𝜃𝜃 − ℎ) tan𝜃𝜃𝑇𝑇 + (ℓ cos 𝜃𝜃 + h cot 𝜃𝜃) (30) 

𝐴𝐴𝐴𝐴���� = 𝐴𝐴𝐴𝐴���� − 𝐴𝐴𝐴𝐴���� = (ℓ sin 𝜃𝜃 − ℎ) tan 𝜃𝜃𝑇𝑇 − (p − ℓ cos 𝜃𝜃) , (31) 

and simplifying, the shaded fraction is given by: 
 

𝑓𝑓𝑠𝑠 =  max �0, min �
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝜃𝜃 + (𝐺𝐺𝐺𝐺𝐺𝐺 sin𝜃𝜃 − tan𝛽𝛽𝑐𝑐) tan 𝜃𝜃𝑇𝑇 − 1

𝐺𝐺𝐺𝐺𝐺𝐺 (sin𝜃𝜃 tan 𝜃𝜃𝑇𝑇 + cos 𝜃𝜃)
, 1�� (32) 

 
Note that 𝑓𝑓𝑠𝑠 must be clamped to the range [0, 1] to make physical sense as the shaded fraction. 
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7 Implementation Procedure 
Here we outline the process of calculating a tracker’s true- and backtracking rotation angles.  

1) Using the array’s location and the datetime of interest, calculate the solar azimuth 𝛾𝛾𝑠𝑠 and
elevation 𝛽𝛽𝑠𝑠 with ephemeris tables or a solar position algorithm like that described in
Reda and Andreas (2014).

2) If the array is mounted on a cross-axis slope, calculate the slope-adjusted axis tilt 𝛽𝛽𝑎𝑎 and
cross-axis slope angle 𝛽𝛽𝑐𝑐 using the slope tilt 𝛽𝛽𝑔𝑔, the azimuth difference Δ𝛾𝛾 = 𝛾𝛾𝑎𝑎 − 𝛾𝛾𝑔𝑔,
and equations 19, 22, and 26:

𝛽𝛽𝑎𝑎 = tan−1(tan𝛽𝛽𝑔𝑔 cosΔ𝛾𝛾) (19) 

�⃗�𝑣 = �
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� = �

sinΔ𝛾𝛾 cos𝛽𝛽𝑎𝑎 cos𝛽𝛽𝑔𝑔
sin𝛽𝛽𝑎𝑎 sin𝛽𝛽𝑔𝑔 + cosΔ𝛾𝛾 cos𝛽𝛽𝑎𝑎 cos𝛽𝛽𝑔𝑔

− sinΔ𝛾𝛾 sin𝛽𝛽𝑔𝑔 cos𝛽𝛽𝑎𝑎
� (22) 

𝛽𝛽𝑐𝑐 = sin−1 �
�𝑣𝑣𝑥𝑥 cosΔγ − 𝑣𝑣𝑦𝑦 sinΔ𝛾𝛾� ⋅ sin𝛽𝛽𝑎𝑎 + 𝑣𝑣𝑧𝑧 cos𝛽𝛽𝑎𝑎

|�⃗�𝑣|
� (26) 

3) Calculate the solar projection and true-tracking angle using equations 1, 4, and 5:

�
𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦
𝑠𝑠𝑧𝑧
� = �

cos𝛽𝛽𝑠𝑠 sin 𝛾𝛾𝑠𝑠
cos𝛽𝛽𝑠𝑠 cos 𝛾𝛾𝑠𝑠

sin𝛽𝛽𝑠𝑠
� . (1) 

�
𝑠𝑠𝑥𝑥′
𝑠𝑠𝑦𝑦′

𝑠𝑠𝑧𝑧′
� = �

𝑠𝑠𝑥𝑥 cos 𝛾𝛾𝑎𝑎 − 𝑠𝑠𝑦𝑦 sin 𝛾𝛾𝑎𝑎
𝑠𝑠𝑥𝑥 sin 𝛾𝛾𝑎𝑎 cos𝛽𝛽𝑎𝑎 + 𝑠𝑠𝑦𝑦 cos𝛽𝛽𝑎𝑎 cos 𝛾𝛾𝑎𝑎 − 𝑠𝑠𝑧𝑧 sin𝛽𝛽𝑎𝑎
𝑠𝑠𝑥𝑥 sin γ𝑎𝑎 sin𝛽𝛽𝑎𝑎 + 𝑠𝑠𝑦𝑦 sin𝛽𝛽𝑎𝑎 cos 𝛾𝛾𝑎𝑎 + 𝑠𝑠𝑧𝑧 cos𝛽𝛽𝑎𝑎

� (4) 

𝜃𝜃𝑇𝑇 = atan2(𝑠𝑠𝑥𝑥′ , 𝑠𝑠𝑧𝑧′) (5) 

4) Calculate the preferred backtracking correction angle using equation 14:

𝜃𝜃𝑐𝑐 =  − sign(𝜃𝜃𝑇𝑇) cos−1 �
|cos(𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)|
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

� . (14) 

5) Determine if backtracking is required by checking the condition in equation 15:

�
cos(𝜃𝜃𝑇𝑇 − 𝛽𝛽𝑐𝑐)
𝐺𝐺𝐺𝐺𝐺𝐺 cos𝛽𝛽𝑐𝑐

� < 1 (15) 

6) Calculate the overall tracker rotation using equation 16:

𝜃𝜃𝐵𝐵 = 𝜃𝜃𝑇𝑇 + 𝜃𝜃𝑐𝑐 (16)
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Figure 10 shows several example tracker rotation curves calculated with the above procedure 
for the date 2019-01-01 at coordinates (40.0, −80.0) with 𝐺𝐺𝐺𝐺𝐺𝐺 = 0.5 and 𝛽𝛽𝑔𝑔 = 10° at 
various tracker axis and slope azimuth. 
 

 

Figure 10: Example true-tracking and backtracking curves for various array orientations. 

Table 1: Validation data set for example in Figure 10 with 𝜸𝜸𝜸𝜸 = 𝟏𝟏𝟏𝟏𝟏𝟏° 𝐚𝐚𝐚𝐚𝐚𝐚  𝜸𝜸𝒈𝒈 = 𝟏𝟏𝟏𝟏𝟎𝟎°. 
Time (UTC−05:00) Apparent Elevation Solar Azimuth True-Tracking Backtracking 
8 AM 2.404287 122.791770 −84.440 −10.899 
9 AM 11.263058 133.288729 −72.604 −25.747 
10 AM 18.733558 145.285552 −59.861 −59.861 
11 AM 24.109076 158.939435 −45.578 −45.578 
12 PM 26.810735 173.931802 −28.764 −28.764 
1 PM 26.482495 189.371536 −8.475 −8.475 
2 PM 23.170447 204.136810 15.120 15.120 
3 PM 17.296785 217.446538 39.562 39.562 
4 PM 9.461862 229.102218 61.587 32.339 
5 PM 0.524817 239.330401 79.530 5.490 

axis tilt 𝛽𝛽𝑎𝑎 = 9.666° 
cross-axis slope angle 𝛽𝛽𝑐𝑐 = −2.576° 



16 
This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications. 

References 
E. Lorenzo, L Narvarte, and J Muñoz. 2011. “Tracking and back-tracking.” Progress in 
Photovoltaics: Research and Applications 19: 747-753. https://doi.org/10.1002/pip.1085  

W. Marion and A. Dobos. 2013. “Rotation Angle for the Optimum Tracking of One-Axis 
Trackers.” NREL Technical Report NREL/TP-6A20-58891. https://doi.org/10.2172/1089596  

D. Schneider. 2012. “Control Algorithms for Large-scale Single-axis Photovoltaic Trackers.” 
Acta Polytechnica, vol. 52, no. 5.  

B. Nascimento, D. Albuquerque, M. Lima, P. Sousa. 2015. “Backtracking Algorithm for Single-
Axis Solar Trackers installed in a sloped field.” Int. Journal of Engineering Research and 
Applications, vol. 5, no. 12.4, pp. 100-103. 

I. Reda and A. Andreas. 2004. “Solar position algorithm for solar radiation applications.” Solar 
Energy, vol. 76, no. 5, pp. 577-589. https://doi.org/10.1016/j.solener.2003.12.003 

https://doi.org/10.1002/pip.1085
https://doi.org/10.2172/1089596
https://doi.org/10.1016/j.solener.2003.12.003

	Acknowledgments
	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Reference Frames and Coordinate Systems
	3 True-Tracking Angle
	4 Backtracking Angle
	5 Axis Tilt and Cross Slope
	6 Shaded Fraction
	7 Implementation Procedure
	References

